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A quasistatic theory of plasticity of polycrystalline bodies which took approximately into 
account the inhomogeneity in the plastic deformation and its accompanying elastic 

microdeformations, was proposed in [l]. This theory is extended below to the case when 
there are still initial elastic microstresses in the body which do not destroy the statistical 

isotropy and homogeneity of the body in its initial state, as well as the microstresses 
caused by the inhomogeneity in plastic deformation. Such an extension of the theory is 
of indubitable interest since initial microstresses inevitably originate in the formation 
of polycrystals by cooling of a liquid metal. An indication of the essential role of these 

initial stresses in the plastic deformation process is encountered in the literature ( @I, say), 
however, insofar as the authors know no attempt has yet been made to describe this role 
theoretically (i. e. the influence of the initial microstresses on the connection between 
the macroscopic stresses and the plastic strains). As will be seen later, taking account of 
the initial elastic microstrains and their corresponding stresses induces noticeable quan- 
titative and qualitative corrections in the theory of plasticity of polycrystals. 

1. Some aupplementa to the paper Cl]. A modification of plasticity 
theory based on the conception that the macroscopic plastic deformation can be expres- 
sed approximately as the arithmetic mean of a finite number of elementary plastic defor- 
mations to which different values of the local yield point correspond, was proposed in 

Section 1 of Cl]. In this modification, all the random quantities, yield point, stresses and 
plastic deformations, were averaged over a volume enclosing a sufficiently large quan- 

tity of crystal grains. 
The mentioned modification of the theory is extended in Section 2 of the same paper 

to the model of a polycrystal consisting of an infinite number of elements, in conformity 

with which the sums are replaced by integrals. Hence, the yield point. the stresses and 
the plastic deformations are considered as functions of some scalar random parameter 
3, in substance, the intensity of the dry friction force tensor T, whose realization will 
be denoted by T , will be the fundamental random scalar parameter of the problem. 

The density p (r)of the distribution T should be known and is considered identical at 
all points of the polycrystal because of the assumption of its statistical homogeneity. 
However, parameters z and g, uniquely connected with, and introduced instead of ‘T 
and T in [l], are selected so that integration is performed within the limits 0 < & Cf. 
The connection between T and E is defined by Expression 

E = Sp(ddr (0 6 c < i) W) 

i.e. & is an integral function of’the probability distribution of T. 
If T and T are inserted in place of 2 and 6 in the relationships (2.4) of Cl], these 

latter become 
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Here El/n_, (efjP) a h IS t e random plastic deformation tensor ; Z t,, (at,) the random 
stress tensor ; T,,, (s,,) the random tensor of dissipative forces of resistance to plastic 
deformations. 

The notations for the realizations of these random tensors are indicated in parantheses. 
Integration in these formulas is performed between the limits 0 < ‘c .$ 00 in conform- 

ity with the fact that the random scalar quantity T is always positive. Its probability 

density is a physical characteristic ot the polycrystal. being a measure of the spread in 
the local yield points. 

Let us turn attention to the fact that the last two Eqs. (1.4) and (1.5) are written to the 
realizations. They express the local flow law of the polycrystal. The quantity r will be 
constant in the integration of the differential relations (1.5). Moreover, let us note that 

integration with respect to & in [l] (exactly as integration with respect to T in (1.2)- 

-( 1.4)) means averaging over the set of realizations rather than over the volume. Mean- 
while, the modification of the theory presented in Section 1 of [l] is based on averaging 
over the volume. Hence, the extension of this theory to a model with an infinity of ele- 
ments is based substantially on the ergodic hypothesis ; this circumstance was not stipu- 
lated in [l]. 

2. Introduction to the theory of initial mlcroctrer~e:. Let us assume 
that there is a random field of Initial elastic microstrains Eli’, (eij”) in the polycrystal, 

which does not destroy the macroscopic homogeneity and isotropy of the body in its ini- 
tial state. Because of the requirement that the body be statistically homogeneous, this 

random tensor should be a stationary function of the coordinates, and because of the requi- 
rement of statistical isotropy, all its principal directions should be equally likely, from 
which there follows that the probability density of the six-dimensional random variable 

E,j” can be a function only of the invariants eij”. Only the deviator part of the tensor 
El)” is hence of interest for the sequel since precisely this part exerts influence on the 
development of the plastic deformations. Consequently, and also considering that’ the 
global and deviator parts of Eli” are independent random variables, we shall henceforth 
assume that Efj” will be the deviator (in order not to have to introduce a special nota- 
tion for its deviator part). Under the stipulations made, the density of the distribution 
E,j” can be a function only of the second and third invariants of Eij” and its mathema- 
tical expectation (Efj”) should be zero. However, it is natural to make the additional 
assumption that not only all the principal directions of Eij’ are equally likely, but all 
kinds of Initial microstrains are also equally likely since there is no foundation to expect 
that there is a preference for any of them (for example, at least for pure shear or tension). 

Then the single possibility remains that the probability density of E,j” is a function of 
its second invariant (its intensity) 
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F(Q”) = F(8’), e”= vm (2.1) 

Let us note that the positrve random variable e”has as upper bouud the inequalitv 

tJ0<~r/26 (2.2) 
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in which G is the elastic shear modulus (strictly speaking, the local elastic shear modulus. 
However in the interests of the considered approximate theory in which averaging with 
respect to crystallite orientations is assumed to have been performed in advance,G should 
be identified with the effective shear modulus of the polycrystal), 

The meaning of the inequality (2.2) is that no initial microstresses with an intensity 
exceeding the local yield point can originate during cooling of the metal. Hence, depend- 
ing on the local situation 8” can turn out to equal T/ 26, or even a lower value. How- 

ever, to simplify the theory it is admissible to replace the inequality (2.2) by the equa- 

lity E0 =2/2G (2.3) 

As is evident, such an assumption is directed towards exaggerating the influence of the 

initial microstresses OR the macroscopic picture of the plastic deformation, since the 
intensity of the initial elastic microstrains is here estimated by its upper limit. It is easy 
to note that there should be no elastic strain domain in such a theory : any arbitradly 
small change in loading made in any direction should cause plastic deformation since 

according to (2.3) the dry friction force turns out to be equilibrated by the initial micro- 
stresses. 

The concept of flow boundaries (yield surface) will thereby be lacking in such a theory 

in the sense in which it is ordinarily understood in courses or plastic@ theory. However, 
as is known, the concept of a flow bo~da~(yield point) wili’be the result of idealization 
of the experimentally observed pi&ire of plastic deformation. 

In fact, plastic deformations are observed for any loading changes, and the more accu- 

rate the test formulation, the more rapidly are they detected. It is known that the engi- 
neering tensile yield point is defined as that stress for which the plastic elongation 
achieves an 0.2 % magnitude. 

The fact that the yield point must be determined, in practice, by assigning the magni- 
tude of the plastic deformation emphasizes the conditi~ali~ of this concept. Therefore, 

the absence of the yield point concept in a theory based on the equality (2.3). will not 
be a flaw, but will more rapidly indicate the approach of theory to experiment. 

It should be emphasized that the yield point and flow boundary concepts can be intro- 
duced even in this modification of the theory if the threshold of the intensity of plastic 

deformation is given, i. e. that intensity starting with which the plastic deformations are 
taken into account, and below which are neglected. It is natural that the dimensions and 
shape of the flow boundaries obtained here will depend on the magnitude of this provi- 
sional threshold, as has been observed experimentally f3]. 

In addition to the modification of the theory based on (2.3), some other simplified 
modifications of the theory will also be considered below. In particular, a modification 

based on the assumption that e, = con&, r = con&,, where e. < t /ZG will be 
investigated. 

It turns out that there is the concept of a flow boundary in the usual sense in such a 
theory. where comer points are formed on this boundary during plastic deformation. 

The acceptance of the assumption (2.3) established a single-valued interrelation 
between two random scalar parameters, the intensity of the dry friction force T and the 
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intensity of the initial elastic strains, where the density of the distribution E9 should be 
identical to the density of the distribution X/ 2G. Formally, the introduction of the 
initial microstrain tensor into a theory expressed by the set of Eqs, (1.2)-( 1.5) is not 
difficult, however, the problem hence turns out to be dependent not only on the random 
scalar T, but also on the random tensor kZ’ij*l which makes quite complicated the solu- 
tion of the equations for specific kinds of loading. 

It is hence expedient to utilize (1.2)-11,5) henceforth in a somewhat simplified form, 

by replacing (I, 4) by one of the two relationships 

Tfl = (2 ij) - aE*j' P-4) 

TV =2G I@,]) - pErjPlt Efj = EljP + Eij’ (2.5) 

These relationships have the essential advantage over (1.3) that the &;jP is not under 
the integral sign, 

As has already been remarked in [l], the application of (2.5) corresponds to the 3essel~ 
ing theory [4] extended to a model with an infinite number of elements. This modifica- 
tion of the theory describes the picture of the macroscopic plastic deformations correctly, 
although it does not permit taking account of some fine effects observed under cyclic 

loadings. As regards (2.4). in its possibilities it is approximately equivalent to (2,5), 
The subsequent exposition will be oriented primarily towards utilization of the modi- 

fication of the theory with (2.4) in place of (1.4). Taking account of the initial microl 
strains this equation is written as follows: 

TU = (Zrl} - &EfjP - 2GE$j (2.6). 

Here it has been taken into account that the initial elastic microstrains can contribute 

to, or conversely, hinder overcoming local dry friction, depending on the direction of the 
effective stresses, The scalar coefficient a in (‘2.6) is henceforth assumed constant. 
Equation (2.6) can be reduced to an identical form to (2.4) 

It hence follows that taking account of the initial elastic microstrains in the above- 

mentioned formulation of the problem can be formally substituted by ~ntr~u&ing the 
field of initial plastic deformations OP 2G 

Eti n22 Q Eij= 
(2.8) 

The set of Formulas (2.71, (1,5}, (2.3) forms a modification of the quasistatistical the- 

ory of plasticity of micro-inhomogeneous bodies taking account of the initial elastic 
microstrains. In order to be able to apply these formulas, in particular, in order to derive 
relationships between the macroscopic stresses (X:,,) and the macroscopic plastic defor- 
mations (EijP) from them, it is however necessary to know the distribution law of the 
random tensor E*j". 

3, Denrftf8a of the dttttfbutfont E,j’ and T, As has been remarked, 
the random initial microstrain tensor should possess spherical symmetry because of the 
requirement of initial isotropy and, homogeneity of the polycrystal, i. e. its probability 
density will be a function just of its intensity. In combination with the tensor linearity 
of the equations of the theory under consideration, this latter makes utilization of the 
vector interpretation of Il’iushin 153 henceforth possible and convenient since all the 

formulas presented below are invariant in five-dimensional vector space. 
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In place of the six components of the deviator Et*” , ,which are interconnected by the 

linear dependence E~J,’ = 0 , let us introduce the five independent quantities 

E,” =j& E1lO, Et0 = J’-r(EJ + l/z Ed 

E,* =1/zE120, Ed0 =1/%Ea30, E&O = @E,,” WI 

considered as components of a five-dimensional vector whose length is 

J/ &*a + &*a + . . . + &“1 ZzE @yy = I?* (34 
We shall ueat the quantity Ed* as the realization of the random five-dimensional 

vector E,‘. Because of the properties of the random tensor E,j” described earlier, the 

mathematical expectation of this five-dimensional vector is zero, and its probability 
density will be a function just of the length of the vector of its realization e, (3.2). 
Therefore [S], the vector Eli” a 1s normally distributed, i.e. its probability density is deter- 
mined by I 

PW = 3,; 
- 4? 
- exp zaa (3.3) 

in which U2 is the variance, which is iien&cal for all En.O. 
Having assigned the distribution law of the components of the five-dimensional vector 

E” kv we can also calculate the distribution law of its length 

E* = dEloa + fp + . . . .+ jya (3.4) 

To do this, let us utilize the known expression for the density of the distribution of a 

random variable X2 with k degrees of freedom ( [7], p. 192). Putting k = 5 therein, and 
going from the case of unit variance to ~2 variance, we obtain 

P (e09 = 
i - e-0’ 

29 \b//,) ,N Ox’ --%- (3.5) 

From this formula, which yields the density of the distribution e,,*, results the following 

expression for the density of the distribution go* 

(3.6) 
which extends the known Rayleigh law governing the distribution density of the length of 
a random plane vector whose components are independent random normally distributed 

variables, to five-dimensional vectors. A detailed exposition of the theory of random 
multidimensional vectors with spherical symmetry can be found in 161. 

For the theory based on the assumptions (2.3). the distribution density of the intensity 

of the dry friction force p (T) is defined by the same formula (3.6)with a2 replaced by 

b2 = (2G)W (3.7) 
i. e. 

(3.8) 

The information presented above permits evaluation of the mathematical expectation 
and variance of any random variables which are functions of the random tensor E$ and 

the random scalar T. Hence, although (3.8) was obtained in close connection with 
assumption (2.3), it should be utilized even in the other modifications of the theory, 
thereby considering that the tensor of the dry friction forces has neither preferred orien- 
tations of the principal axes, nor any more probable than other values of the Lode para- 
meter. Under the conditions of assumption (2.3), the invariant Q will not be a random 
independent parameter (since it is connected with f by means of (2.2)). This latter 
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must be taken into account in calculating the mathematical expectations or variances 
of random variables which depend on T and Bit”. In the general case ~should be con- 
sidered an independent random variable in the domain bounded by (2.2). 

It follows from (3.8) that the mathematical expectation of the intensity of the dry 
friction force (which can be interpreted as a macroscopic yield point of a polycrystal 
free from initial microstresses) is determined by 

i. e. turns out to be proportional to the mean-square deviation of the random scalar T 
(the intensity of the dissipative forces.resisting plastic deformation). 

This circumstance is constantly utilized practically by metallurgists who raise the 

yield point of alloys by doping their crystal lattices with inclusions whose purpose is to 
increase the spread of the local yield points relative to their mean value, i.e. to increase 
the variance b2. 

4. Mficro8caplc one-dimenafonrl lordlng of a body with initial 
micro8traln8. Let us apply the considered theory to the case of one-dimensional 

strain by utilizing here the following Eqs. : 

deijP = Q dk, Z{j z (Xij) - CMfjp9 vc/T(jlYij == 7 (4.1) 
and considering that there are initial plastic strains zlj Pa It is expedient to replace the . 
system (4.1) by an equivalent system with five independent unknowns zkP 

dekp =~dh, ZI:, =(Z,) -aaekp (4.2) 
Following Il’iushin [5] here 

elp - ‘)/$&I~, e2p = IQ (hap + ‘/9hP) 
(4.3) 

es’ == ‘t/ZelsP, 8,’ = f?h2gp, &bp = f/-ZeKf 

The quantity (I: k) is expressed in terms of (zII) by means of formulas analogous 

to (4.3). It is easy to confirm (if the equality ajjP =0 (2 jj)+ 0 is taken into account 
here) that the system (4.1) will actually be a corollary of (4.2). 

Furthermore, let us introduce another change of variables 

QekP 
Pk=rr (4.4) 

Then (4.2) will reduce to the following simpler form : 

dpk = t&v tk = ‘% - pk (1 = ft/tp + t,a + 8 l * + t5y (4.5) 
where 

Y =- 
P 

(4.G) 

Let us apply(4.5) to the case of a macroscopically homogeneous loading. Hence 

Sk = 0 for ic+l, St = s (4.7) 

Substituting (4.7) into (4.5). we obtain 

dpl = (S - f+) dy, d&$ = -pk dy (k # f), t = f(S - PI)’ + I’+* (4.8) 

In this latter formula 

P*sf m+P,f +. +-ih-P,s= P’-PQI’ (4.9) 
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From the second formula of (4.8) there results that 

@h = f%d (4.10) 

where phsis the value of pk at y = 0, i, e. at the time of the beginning of uniaxial 

plastic loading. It follows from (4.10) that 

P* = cy )/(p10’+ psos + * . ’ + Pso’)-PI’ = p*oe’ (4.11) 

from which 
dP* = - PA (4.12) 

Now, integration of the system (4.8) reduces to integrating a system of two equations 

dp, = (s - pr) dv, dp, = -P& (4.13) 
under the additional condition 

(s - P# + p*‘= 1 (4.14) 
Putting PI = Pto, P* = pa0 therein, we obtain two values 

SlO = fJ1 - PI&o2 + PIO* S‘JO = - IfI - P*o’ + PlO (4.15) 
bounding the domain of values of s 

a10 > a > S20 (4.16) 

within whose limits the strains are elastic, i. e. pk = phs. 
The system (4.13) is easily integrated. its solution taking (4.15) into account is 

PC = (S - PRO - th [J --so -t- arth (so - plo)l} x 
x x[(s - so) sign sol + plo (4.11) 

1 
p* = ch 1.7 - so + ar th (SO - plo)l - P*O 

> 
x x [P--0) @3ns01+ h0 

where X (Z) is the Heaviside function 

X (x1 =Wx> 01, X (0) -0 (a: (0) 

It follows from the second formula of (4.17),(4.10) and (4.11) that 

Pk = 
( 

ho 
(4.18) 

PRO ch [R - 80 + ar th (JO - plofl - Pno 
I 

xx [(s - SO) sign Sol + pk 0 v + 4 

The solution (4.17). (4.18) combines both cases: s,, = so, and a0 = Sn.2 under the 
condition that none of the boundary values is zero. The last case is possible, and will be 
essential later. Let us recall that it was assumed earlier (in the previous section) that 
the intensity of the initial random microstresses at each point of the body equals the 
local yield point. Corresponding to this is the equality PO’ = 1 for which 

so1 = IPfol + PI09 502 = - I PlOl + PlO (4.19) 
Hence So2 = 0 for plo > 0 and so1 = 0 for pzo < 0. 
However, it is easy to note that in thiscase (4.17),(4.18) should be altered as follows: 

pl = {s-ppro- th[s- arth pd x x 1-s sign P~OI t PRO 

6% = 
PkO 

p,a ch [I - uth pro] -PkO x xi- S sign n01 + I)n0 (4.20) 

The formulas obtained above solve the first part of the problem of one-dimensional 
loading of a body with initial elastic microstrains, namely, they express the local plastic 
deformations in terms of the macroscopic stresses and the local value of the elastic mi- 
crostrains, i.e. determine one of the possible realizations of plastic deformation in a 
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polycrystal. In order to fmd the macroscopic plastic defoxmation it is necessary to solve 
also the second part of the problem, namely, to calculate the mathematical expectation 
of plastic deformation knowing the distribution law of the initial microstrains (3.2) and 

their dependence on the local plastic deformations expressed by (4.17).(4. IS), (4.20). 

Let us use the known expression for the mathematical expectation of quantities depen- 
dent on the components of a random vector 

(EjP) = SS$SS ejpp (8ko) de%” de,“. . . de,” (4.21) 

Substituting (3.3) here instead of p (gko) , and 

s;” = v$$ r P&O* ejp zz- z Pj (4.22) 

in place of 8k” and 8jn , and taking into account thar according to the assumption (2.3) 

we obtain 
PO* = Vpros + pee2 + - * l -I- P6!? = 1 (4.23) 

Integration is performed here over all r/Ike within the limits 0 to 00; 62 is the vari- 

ance (dispersion) of the intensity of the tensor of the dry friction force (3.7). 
Spherical coordinates in the five-dimensional space PA,, should be used in an actual 

calculation of the integrals (4.24) by putting 

Pl,O = tYJs e,* P2.0 = sin 0r co9 Q2, pa,e = sin 8, sin e2 cos e. 

P4.0 = sin 0, sin O2 sin 0s eo3e,, pb,o =sin 0, sin B2 sin e2 sin 0* (4.25) 

Here T plays the part of a radius-vector in this spherical coordinate system, The new 
coordinates have the following ranges of variation: 

0~5 z\(oo, o\ce,,<n, o<e,<ns, obe,gn, o<e4\fzx (4.26) 

within whose limits there exists a one-to-one correspondence between all points of the 
five-dimensional Euclidean space, and the curvilinear coordinates. The Jacobian of this 
coordinate system is J = ti sins 0, sin2 e2 sin es (4.23) 

and therefore,(4.24) in the coordinates r, $I,, is written thus : 

This expression can be used to calculate the mathematical expectations of plastic 
deformations in both the particular one-dimensional loading ease considered above, and 
also for other kinds of loadings. In conclusion, let us determine the mathematical expec- 
tations of E$ in the general case when the inequality p, Q 1 is taken instead of the 
equality ps= 1. 

Then E. turns out to be a random parameter independent of T, whose upper bound is 
the inequality Es Q T/X. This latter bound is mathematicalXy equivalent to the 
demand that the joint distribution density of Ek and T be zero in the domain E&-T/Z 
Again introducing spherical coordinates in the five-dimensional space Ego, we obtain 
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x x is 2s 

x sin3 O1dOl sin2 0% de% sin e3 de, e,*de, 
s S s S ll 0 0 0 

To obtain (4.28) from (4.29) it is necessary to put formally 

(~.30) 

Here 6 is the Dirac function 

&(z)ds = 1 (4.31) 

since precisely such a substitution means that only the value ~scoincident with r/z is 
probable. 

6, Mathemrticrl expectation of the plastic deformation of a 
polycry:t81 devoid of iIlftiA1 mfcto8trsr8er. Let us start an investigation 
of the results of the theory with the simplest particular case, namely, let us assume that 

there are no initial microstresses. In this 
case the etp will be functions only of the 

/ scalar parameter 7 in conformity with 
which 

(Err’) = ~~~p~~~~~~~d~ (5.1) 

where p (T) \s defined by (3.9). 

ar 

P 
4 JJi ff 6” 

Fig, 1 Fig. 2 

The solution obtained in the preceding Section remains valid even for pkO = (),hence 

$10 = +1, sss = --1 . Therefore 

PI =(s - sign s& i(s - aa) SiFTI1 801, p&. = 0 (k + I) (5.3) 

Returning to the initial notations here, and putting ss = + 1 for definiteness, i. e. 

considering s > 0, we obtain 
ep =$((2>-r)z((X)-r) (5.3) 

For simplicity in writing the subsequent formulas, the subscripts 1 on the eiP and (2 1) 

have been omitted here. 
Substituting (5.3) into (5.1). we arrive at the following formula which expressed the 

dependence between the mathematical expectetions of the stresses and plastic deforma- 
tion in the one-dimensional loading case 
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(Ep> = $ S ((2) -r)p(r)af 
0 

Differentiating (5.4) with respect to (2)) we have 

d Up, 1 
(W 

d(e)=rX S P(f) dr 

It hence follows that 

(5.4) 

(5.5) 

(5.6) 

i. e the mathematical expectation of the plastic deformation in the absence of initial 
microstresses turns out to be proportional to the double integral of the density distribution 

of the yield point. Shown in Figs. l-3 are curves picturing 

dZ <EP) 
P((D) = da, 

(z> = fs (a VP>) 
for two different values of the variance bs. Values corresponding to (2) e (T), i.e. 

the mathematical expectation of the yield point 
which, as has already been pointed out earlier, for 

micro-inhomogeneous bodies, should be considered 

as the effective yield point of the material, are 
marked by points A on these curves. There results 

from (5.5), (5.4) that the curve <I: )= f2 (CC (E”>) 
has the asymptote 

(X> =a <Ep> + CT> 

The slope of this line is defined by the parameter 
a which plays the part of the hardening modulus, 

and its initial ordinate equals the mathematical 
d$ 1. expectation of the yield point. The curves in Fig. 3 

Fig. 3 are sufficiently similar to the experimental curves 
(2 > = f (( EP)) for materials which do not have 

flow plateaus, which indicates that the distribution law (3.8) will be a satisfactory appro- 
ximation to the true distribution law of the local yield points in actual polycrystalline 

materials of the mentioned kind. 

6, Mathemrticrl expectation of plastic deformation of a poly- 
cryrtrl with initial micro8treBter (8lmplified modification of the 
theory). Underlining the preceding discussions was the assumption that the compo- 
nents of the initial microstrains Eke are independent random variables subject to a nor- 
mal distribution law. After a number of discussions and computations, this resulted in 
(4.28) and (4.29). governing the averaged plastic deformations under conditions (2.3) or 
(2.2). Let us consider a simplified modification of this theory, based on replacing the 
distribution density of the dry friction intensity p(r) (3.8). and the density of the inten- 
sity of the elastic initial microstrains p (e,) (4.30) approximately by the expressions 
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P(Z) = -g &$exp -+qT-.(T)) 

P(Q)= -$+&=s cxp~-d((e,,-(Eo)) 

(6.1) 

Utilization of the approximate formulas (6.1) means that in calculating the random 
variables dependent on x and E,, all the realizations of these latter quantities will be 
identified in a first approximation, with their mathematical expectations. Substituting 
(6.1) in place of the corresponding members in the integrands in (4.29) or (4.28). we 
obtain 

(Ed’> = !J#jSakp~(~- (T))8(eo- (Ea))sin38rsina0ssint3,drde,,d0, ..!!ZY 

This formula is substantially simpler than the general relationships (4.29). Neverthe- 

0 
2 

Fig. 4 

less it permits development of a number of inte- 
resting features of the proposed theory. 

Let us use the results obtained earlier for the 
one-dimensional loading case, and substituting 

them into (6.2) we obtain 

<E$‘> = 0 for k # I, 
n 

<E,P) = $ 
‘S 

eedsinn Cil dOI 

0 

where 8,p is defined by (4.4) and (4.7). 

Presented in Fig. 4 are typical curves for the 
development of local plastic strains (the graphs 

are constructed as a function of the angle Or for 
2c.Q I T = 1). Attention should be turned to the 

2 

Fig. 5 

fact that the dependence of erp on 6r turns out to be almost linear, which considerably 
simplifies the evaluation of <EiP). 
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Shown in Fig. 5 are graphs of (2) = f (<Ep)) for three cases 

(a) 2G(Bo) =i <T)’ 
(b) 26<%) 1 

-=-i-* <T) 
(c) 2G<Eo) --Q 

<I’> 
It is seen from these curves that the quantity (Eo) (the mathematical expectation of 

the intensity of initial microstrains) substantially influences the nature of the hardening. 
Growth of @a) (for fixed values of (2’)) results in an earlier appearance of plastic defor- 
mations, and their slower tendency to the asymptote. Correspondingly, the greater the 
<Eo>, the longer does the process of stabilization of the hysteresis loop under cyclic defor- 

mation turn out to be (Fig. 6). 
Pictured in Fig. 7 are the flow surfaces corresponding to cases (b) and (C ). 

In the absence of initial microstrains and the simplifying assumptions utilized above, 

Fig. 6 

the ilow surface is shifted as a solid whole accord- 
ing to the f~damental modification of translation 

flow theory [S]. In the presence of initial elastic 
microstrains, the shape and size of the flow bound- 
aries turn out to be dependent on the previous plastic 

Fig. 7 

deformations, whereupon comer points form on the flow boundaries (yield surface) during 
plastic deformation. However, these points are not as acute as in slip theory [9]. More- 
over, an analysis of the computations performed for the considered modification of the 

theory showed that in the neighborh~~ of the comer points, three zones a, b and c 

must be distinguished (Fig. 7). Zone a is the elastic strain domain, The direction of 
the plastic deformation increment in zone b is independent of the stress increment just 
as is assumed in flow theory. However, this latter does not hold in zone C, where the 
direction of the vector d (Iz$‘> depends not only on < 2: IS>, but also on (1 i 2: k}. The zones 
0 turn out to be transitions, therefore: the regularities of plastic deformation gradually 
change in them from those which are assumed in flow theory to those in elasticity theory 
(depending on the direction of the vectors d ( Z,), d < 2,)). This latter makes experi- 
mental detection of corner points of the considered kind quite difficult. In case (a), 
when we have 2G <E,,>/(T) = 1, the plastic deformations change with any change in 
stress, and the concept of the flow surface, in the exact sense of this word. vanishes, as 
has already been remarked before. 

7, C on c 1 us i on, The curves presented above, which express the dependence of 
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<Ep,) on (X,&were constructed for three different rela~onshi~ between 26 &,) and CT), 
starting from a simplified theory based on replacement of all realizations of the random 
variables Es and T by their mathepatical expectations. The curves mentioned yield a 
qualitative representation of the influence of initial elastic microstrains on the connec- 
tion between the macroscopic stresses and the plastic strains. A more exact judgement 
of this influence could be obtained without involving the mentioned simplification, but 

by utilizing directly the general formulas (4.28),(4. ‘29). which would however involve 
more tedius calculations. The appropriate ~formation will be presented in the authors’ 
paper being prepared for publication, which is devoted to applying the considered theory 
to cyclic loadings. It is easy to forsee that for a monotone one-dimensional loading. the 
general theory will yield results which will differ from the approximate results presented 
above as follows. 

1. The flow boundary (yield surface), in the exact sense of the word, will be absent for 
any relationship between (E,) and CT), and not only for 2C (Eo) = (T), as has been 
obtained above. 

The concept of flow boundary can be introduced in the general theory only by assign- 
ing some tolerance A on the quantity <BP> starting with which the macroscopic plas- 
tic deformations are taken into account, as has been done in practice. 

2. As the ratio 2C <&) : <f> increases, the conditional yield point <Z) (i. e. the value 
of the macroscopic stresses for which (Et’) reaches the value A) is lowered. and the curve 

(i> = f (<En)) tends more slowly to its asymptote. Both these effects are qualitatively 
retained, however, in sharper form in the approximate theory expounded above. 

In the authors’ opinion, the proposed quasistatic theory of plasticity is of greatest inter- 
est for the analysis of the strain picture under cyclic loads, where it permits an interpre- 
tation of a number of fine effects observed in tests, and it can be utilized for the classi- 
fication of materials (from the viewpoint of their reaction under cyclic loads). Moreover, 

this theory can turn out to be useful even for an approximate estimate of the influence 
of initial and strain microstresses on the strength of materials since it discloses the possi- 
bility of assessing the mathematical expectation and variance of the intensity of initial 
microstresses, as well as the changes in these quantities during plastic deformation (on 
the basis of experimentally observed curves connecting the macroscopic stresses and 
strains. 
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Introduction. We consider the St. Venant flexure problem for beams of narrow 

rectangular cross section, that is under the assumption of plane stress, for two reasons. 
The first of these is that it is possible to give an exact solution in closed form for this 
problem including significant effects of couple stresses. The second reason’is that this 

problem may be considered as a special case of the problem of deriving two-dimensional 
shell theory from tree-dimensional elasticity theory in the iterative manner which has 

been presented for the general case in September 1967 in Kopenhagen at the Second 
Symposium on Shell Theory of the International Union of Theoretical and Applied 
Mechanics (IU TAM). 

Formulation of the problem, Appropriate differential equations are three 

equilibrium equations 
%c,* + %c*, = 0, ol+v.x -t- a,,,, = 0, (la, b) 

%*x + $.v + ax, - uu, = 0 (lc) 

three compatibility equations (‘) 

e xx.u - elrx,x + kx = 0, e,,,, - e,,,, + k,, = 0, k,,, - k,*% = 0 G% ba Cl 

and six stress strain relations which are here been taken in the form 

(3% b) 

(3~s d) 

W. 4 

The’ system (1) to (3) is to be solved in the rectangular region $f 1 < C, 1 x 1 < L 
subject to boundary conditions 

*) which are a consequence of strain displacement relations 

exx = b ellY = qyt kx =9,x, k, =Jt,,,, ex, = 09X - % e, = q,, 4 9 


